G R W N

~

Dialogues on Natural Code

Lu Wilson
TodePond
London, UK
todepond@gmail.com

\\\\\\\II//////%

David H. Ackley

Living Computation Foundation
Placitas, New Mexico, USA
ackley@livingcomputation.org

Figure 1. The SelfImage starburst.

Abstract

This essay, based on a series of discussions between the au-
thors, is a loosely edited collage in which we work to flesh
out our shared interests in non-traditional machines and
coding mechanisms. We primarily focused on the idea that
all human language can usefully be viewed in programming
language terms — as “natural code”. Programming languages
and natural languages differ in many ways, such as hav-
ing relatively formal definitions versus not, emphasizing
strong syntax versus large dictionaries, and demanding rigid
implementations versus building on the vagaries of living
systems. Still, we saw deep unities as well, much more than
mere metaphor, and we glimpsed the possibility of applying
humanity’s decades of programming language design and
software engineering experience to the task of debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH °24, October 20-25, 2024, Pasadena, California, United States

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

and refactoring the natural codebase that we all share. These
fragmentary and overlapping dialogues represent both a de-
scription and an example of natural code, and we offer them
here, with a simple “natural API” illustration, in hopes of
programming people to join in natural code development.

CCS Concepts: « Software and its engineering — Very
high level languages; - Computing methodologies — Dis-
tributed computing methodologies.

Keywords: Natural Code, Human Computation, Robust API
Design, Implementability

ACM Reference Format:

Lu Wilson and David H. Ackley. 2024. Dialogues on Natural Code.

In Proceedings of XXXXXXX (SPLASH ’24). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXXXXXXXXX

1 Being machinery

DAVE: I think living organisms can be meaningfully viewed
as machines.

LU: Sorry, what?

DAVE: They’re physical arrangements of matter that move
and do work. They have power supplies. Living systems are
machines.

LU: Including us?
DAVE: Including us. We’re machines.
LU: Really? I don’t feel like a machine.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

DAVE: I mean, people usually think of machinery as metal
and screws and batteries, and I have very few of those in my
actual living body.

LU: A non-zero amount?

DAVE: I want to take machines way beyond metal and
screws, and say: Any time matter is arranged in space, and
an energy supply is incorporated so that the arrangement
of matter and energy can do something — that’s what we’re
talking about as a machine. And that description is as true
for screws and metal as it is for people and amoebas.

LU: I don’t know if I want to think of myself as a machine
though.

DAVE: It can be uncomfortable, but when we go to the doctor,
say, we want them to be talking about us in mechanistic
ways, like “the heart machine is not working as well as
it could” or whatever. This framing of a living system as
a machine can be useful when we’re trying to understand
how it works, and how to make it work better.

1.1 Building machinery

LU: As well as being machinery, living things are also capable
of building machinery. That’s what you're saying, right?
DAVE: That’s right. Machines that somehow work to pre-
serve their structures, their patterns, are what we call “life”.
Persistence involves maintenance and repair, but also build-
ing copies.

LU: I guess so! Though I was thinking more about traditional
ideas of “building machinery”, like a beaver building a dam,
or a wasp building a nest.

DAVE: That happens too. And humans build bridges, rock-
ets, and programmable computers. I think about “building
machinery” writ large. It can be something like lighting a fire,
or folding a paper airplane, or moving a rock off a path.

LU: You're using the phrase “building machinery” extremely
loosely here, right? Because to me, “building machinery”
sounds like creating something, or making an artifact of
some sort. But you’re using it to refer to what seems like
just an action, or a process.

“Lighting a fire” doesn’t sound like building anything
at all. It just sounds like enacting a change.

DAVE: Yeah I screwed that up. Collecting wood and stuff is
building the machine. Lighting the fire is flipping its switch.
But, say you’re working at a hamburger joint, where all
you have to do is slap a burger on a bun and put on ketchup
or mayo, and it’s done. You’re “building a machine” out of
other complex arrangements of matter.
LU: You’re changing the arrangement of the burger’s ingre-
dients, and that’s what you're calling “building machinery”.
It’s not that you've “created” these ingredients, but you’ve
built them into a particular pattern.

DAVE: Yes, you're arranging matter to get certain properties.

Lu Wilson and David H. Ackley

—
LU: Okay so you said that a burger is a machine and —
DAVE: The reviewers had some troubles with that.

LU: And I can understand their troubles. You said that a
machine can do something, but a burger just sits there.

DAVE:I — Fair enough. I understand. I mean, there are many
power sources for machines. You could have a battery, or
gasoline, or gunpowder. But you could also have a human.

LU: A human?

DAVE: Like, an old-fashioned well pump is a hand-powered

machine. You pump the handle, and water comes up out of

the spout and helps you live. It’s a human-powered machine.
And maybe a hamburger isn’t the cleanest example —

LU: It really isn’t the cleanest example.

DAVE: — but the hamburger machine runs on muscle power
too. You pick it up and chomp it on down, and it absolutely
does something: It feeds you and helps you live.

7%7

LU: You're stretching the use of the language quite a bit, but
what you’re saying is — when you’re building machinery,
you’re building a pattern.

I could have some LEGO bricks on my table, and they’re
all scattered around. I could build something new just by
moving them around. I could build a pattern, or a house.
Either way, 'm building machinery just by rearranging. Is
that how you see it?

DAVE: Right. Arranging matter. A house is a pattern too.

1.2 Contracting machinery

LU: And you’re saying there are two ways of building ma-
chinery? One way is to do it yourself, to build it directly.

DAVE: Wood, hammer, nail. Yeah.

LU: And the other way is by getting another machine to do
the work for you. You can instruct it to do the building on
your behalf. In this case, you're building indirectly.

DAVE: Yes, you find a programmable machine that’s out
there in the world already. You don’t have to build it yourself.
You ship some code, and have that machine do the work for
you. When you don’t have to send the wood or the tools,
code is incredibly cheap to ship. That’s its superpower.

LU: And that programmable machine could be anything we
can transmit code to, like a mechanical arm in a factory, or a
rocket, or a computer.

DAVE: Or we flip the switch on the wall. We want light.
LU: Okay, I see where this is going.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Dialogues on Natural Code

1.3 Human hardware

LU: You're saying that “the programmable machine could be
a person’.

DAVE: Right. As humans, we can transmit code to another
person and get them to do something for us. We can say,
“Hey, can you help me build this shelter?” or “Can you
build a fire while I gather food?”.

LU: I'd argue that animals do that too, right? Living things
often communicate with each other in some sort of way.
DAVE: It’s certainly a spectrum. Maybe an animal sends a
signal that means “run” or “danger” or “food”.

LU: Either way, you're saying that we can code one another.
Asking someone to do something is coding them, in a way?
DAVE: Yes, we transmit “natural code” all the time — when
we talk with each other, or teach stuff to our kids. If I was
trying to wrap it all up in a box, I'd say

Ithink we should use our knowledge of programming
languages, of software and computing, to examine
our own natural code. To understand it and debug it.
To make society better, and to improve our shared
codebase.

This is why I want to push for a view of computation broad
enough that we can see humans as programmable machines
— that are programmed by “natural code”.

1.4 Coldness and evil

LU: This idea that people “program” other people. To me it
seems —

DAVE: It seems really obvious, right? It helps us to —

LU: No. Actually, I was going to say that it seems really cold.
DAVE: Oh. Well.

LU: It almost seems psychopathic, because it sounds like it’s
all about trying to manipulate other people.

DAVE: Well, I —

LU: But communication isn’t only for influencing people.
We also talk to share our feelings, and connect with others.
Or we just want to be heard, or rant, or share a joke.
DAVE: Right! And I think that’s a good —

LU: So we can’t boil down communication to just “getting
someone to do stuff” because that’s cold, and it’s not true!

—
LU: Reviewer C is worried about “the ideological, tech-
nocratic undertones” of the essay, and “it’s a pervasive
fallacy in the tech world to see all our problems as
technological” and “Every human interaction is reduced
to a kind of programming”.
DAVE: Yeah. And how do you react to that?

LU: I was genuinely worried about this when we submitted,
because it’s something I agree with. There is this pervasive

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

fallacy to see all our problems as technological. I hate it,
and I see it time and time again.

Like recently, I've been hearing more and more people
around me saying that “all we need is better technology”
and all our computer accessibility issues will disappear.

DAVE: I just can’t imagine somebody saying that seriously.

LU: For example, I read a recent essay [17] saying that “Al
will soon come to the rescue” for accessibility.

Or take the climate crisis. There’s this fallacy that we don’t
need to worry about reducing our energy usage, or replacing
our energy sources [10] because —

DAVE: “We will technology our way out of it”. Carbon
capture, seeding the clouds, or whatever we can tell ourselves
to delay dealing with the real problems.

LU: Exactly. In these cases, the actual solution is to not see
the problem as mostly technological. Instead, the solution
is to try to change our behavior, both as individuals and
as a society. I think this is where natural code can help. It
can give us a new perspective and understanding of our
communications and how to improve them.

—
DAVE: One answer to such criticisms is that we are reading
the concept of “technology” broadly enough to include stuff
that’s not traditional technology. People can hear us say

“technology” and think it means traditional programming
languages and computers and “tradtech” generally.

LU: Right, we say “natural code can help us”but sometimes
people hear “traditional technology can help us”.

DAVE: But really we're saying “technology writ large is
much bigger than tradtech” and part of that is understand-
ing ourselves better — that we can be viewed meaningfully
as machines, and our communications can be viewed as code,
and we build more machines to help keep ourselves alive.

LU: And we exchange code with each other.
DAVE: For sure. We are coders. We ship code.

LU: I mean, it’s a tricky idea to sell. And it does sound quite
“technological”.

DAVE: And I think we just have to own that. But we also have
to stress that judgment goes beyond just the tech. Shipping
code “to make money” is different than “to help society”, no
matter how tech hypocrites may try to conflate them.

—
LU: If anything, I think we are calling for fewer problems to
be seen as solvable by tradtech. For example, at work, we
wanted to make it easier to hear each other on our video
calls. We got new tradtech — software, microphones — but
still had problems.

DAVE: And the real solution was like “talk slower”?

LU: It’s mainly “avoid cross-talk” and “be sure to set up
everything properly”. In that situation, deploying “natural

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

code” is what improved things. We actually wrote up a doc-
ument — guidelines for behaving in meetings. And for me
this is a form of “natural code”.

DAVE: Like how modern programming projects often have
an explicit “Code of Conduct” That’s “natural code”!

2 Beyond determinism

LU: Another obvious objection to these ideas is that humans
seem really different to computer hardware, because comput-
ers are absolutely rigid and repeatable. They’re deterministic,
and humans are not.

DAVE: Deterministic execution of code has always been
an illusion. There’s always the possibility of cosmic rays
coming in and flipping a bit, say, and that does happen some-
times [25]. But we know that we can engineer traditional
computer hardware so that the chance of that is small enough
that we can usually ignore it.

LU: But someone could still come and turn off your com-
puter’s power, right?
DAVE: Right, or overheat it.
LU: Or smash it with a hammer.

e
LU: In web development, when you do a “fetch” request
to an endpoint, you usually use your own special kind of
“fetch” function that automatically retries a few times [18].
DAVE: Right, because in the network world —
LU: In the network world, things can go wrong, and in fact,

they often do go wrong [16, 19]. So you run the same code

again and again, to increase the chances that it will work.
—

DAVE: People certainly don’t do the same thing every time.

LU: So when we transmit code to a person, we can’t know

for sure what the effects will be. They might ignore us, or

say no, or do something completely different.

The essay might make no sense to them, or they might get
it but disagree. But even if the chance of convincing them is
low, we might still think that it’s worth a try.

DAVE: Yeah, maybe we’ll succeed. Maybe we won’t. The

machines executing the code of this essay are going to be
way non-deterministic.

—
DAVE: I've been trying to get ideas like natural code across
for a long time [2], and it’s been hard. People bring all of

their traditional computing misconceptions to it. And the
idea of natural code just looks crazy to them.

LU: Has non-determinism been a blocker for some people?

DAVE: Some people would outright say “without determin-
istic execution, it’s not computation.”

7{8_)7

Lu Wilson and David H. Ackley

DAVE: There’s this idea that “if you can’t predict exactly
what the code will do, it’ll be chaos”. My claim is no,
we can still talk in terms of computation and code, even if
the “computer” is not fully deterministic.

Even if we only have a 51% chance that some code will
work versus a 49% chance that it won’t, say, we might still
want to run the code, again and again, for that 2% edge.

7:@37

LU: I've been thinking about how we can get across this
“non-determinism idea”, and I wonder if we can use the for-
mat of the essay itself to help us dripfeed it throughout.

DAVE: Oh I see, bits of conversation out of order, and so on.

LU: Yes, we don’t need to be strictly chronological. We can
jump around and revisit things. When we transmit natural
code, we don’t know exactly how that code will be executed.
We don’t know what the exact order of execution will be
either, but we can still talk about it in terms of code and
computation. It’s still possible to do that.

DAVE: Perhaps also showing how we can bend the familiar
overall “syntax” of a paper, but still transmit legible code.

LU: Someone could skip ahead to the end of the essay, or
miss out a whole section, or just look at the diagrams.

3 Prior “art”

LU: But, Dave: Why put this essay forward as a submis-
sion to a programming language conference? Why not go
to a philosophy conference, or “art”? Why enter through
programming languages as a lens?

DAVE: I mean sure, if we had more time and more collabo-
rators, we’d go to all those conferences — a full court press —
and then FOMO would descend, and the world would change.

LU: “FOMO” as in “Fear Of Missing Out”?
DAVE: Yes, if we could figure out how to —

LU: If we could market this “natural code” idea in all those
conferences, lots of people might get “FOMO” and get involved.

DAVE: And that would be great. But we can only do what
we can figure out how to do — can only do what’s “imple-
mentable” for us at the time.

I do want to poke the bear a bit, and it seems appropriate
for a venue like Onward! Essays that’s explicitly aimed at
computation and programming languages writ large.

LU: Yeah, I see that. I think it’s helpful for you to share why
you’re coming through programming languages, because
people reading this might think there’s a particular reason
behind that. But it sounds like it’s partly just because that’s
where you’re starting from.

DAVE: Right that’s my history. Code’s what I know best.

386
387
388
389
390
391
392
393
394
395
39
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Dialogues on Natural Code

3.1 Historical traditions

DAVE: It’s like philosophy, psychology, and all those things,
are trying to describe what we are — what our touchstones
and key concepts are, how we see what we see, and so on.
I think, despite their great successes, such fields have deep
assumptions that limit how clear and effective they can be.

I think we should start again with notions of program-
ming languages and software engineering, but move beyond
deterministic execution. Then we can start talking about
our human collective computation in terms of APIs, pro-
gramming languages and structures, compositionality and
modularity, and so on.

The goal is: Whenever we speak, we can always know, or
plausibly believe, that what we are saying is implementable.
We could always, at least in principle, build a machine —
using ordinary silicon chips or exotic biological bricks or
whatever — that could run the code we’re shipping. Then
we point at the machine and say “I mean like that!” And
that’s what we cannot do with philosophy or psychology
or religion or anything, that we maybe could do if we say
“Let’s pretend natural language is code”.

3.2 Implementability

LU: I would challenge the idea that natural code is the only
route to implementability. I think that neuroscience, say, or
even physics, offers implementability in some way.

I know there are studies out there where they’ve taken
an organism, a hydra vulgaris, and they’ve mapped out its
entire neural networks, and they’ve used that to get closer
to determining how the creature is implemented [13].

DAVE: I certainly do not want to say that natural code is the
only route to implementability. I would argue that it looks
like the most direct route to implementability.

Driving around a cockroach by putting wires into its
spine [20] is clearly building a piece of living machinery,
working at a pretty low level. But in the computation world,
instead of writing assembly code, we glue together giant
stacks of software and plug one abstracted part into another.

I would argue that, if neuroscientists build more machines
out of more neurons, displaying more complex behaviors,
they’ll stop talking about that overall machine in terms of
neurons. They’re going to start talking about it in terms of
inputs and outputs, and parallel and sequential processing —
in terms of computation and code.

LU: So you think that it all comes back to computation in
the end?

DAVE: Back to implementation. I find neuroscience and biol-
ogy results inspirational for seeing how nature does things.
Many perspectives help! I argue that natural code is yet
another point of view that can be a useful framing for un-
derstanding our world, and making it better.

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

3.3 Related work

LU: Okay, okay. But I don’t think that this “Prior Art” section
actually covers any prior art so far. It feels like a rejection of
everything existing. Natural code can’t be that new, right?

DAVE: Of course, lots of things are connected. Dan Dennett’s
ideas had a big impact on me personally, for one.

LU: I saw you tooted a little remembrance about him. [5]

DAVE: Yeah, he was so clear. With his notions of descriptive
“stances” [12], see natural code as a way of connecting the
intentional stance with the physical and design stances.

LU: 'm reminded of Alexander’s pattern language stuff

too [8]. His “patterns” are like code, describing how to solve

various problems through architecture and design. And there’s
an emphasis on the patterns being “tentative” and unpre-

dictable. There is a non-deterministic aspect to it.

DAVE: Right, and of course design patterns [14] have similar
flavors. Language not quite executable on a computer, but
very “code like” and absolutely executable on developers.

LU: For me, these examples demonstrate that we can spot
aspects of natural code within existing works, perhaps im-
plicitly, and what we’re trying to do is—

DAVE: We're trying to explicitly frame things as code.

3.4 Blending fields

LU: Personally, I seek out the projects that aim to blend
numerous fields, like those that combine science and art
in some way, or those that try to bring together different
categories of research. It’s not always easy to do, but I think
it’s often where the most impactful work can be done — you
get to pick and choose the strengths of various fields, and
get the “best of both worlds” in many cases.

DAVE: Let me be completely honest. My problem combining
art with science is that the results often feel a bit like the
worst of both. You know, not great science, not great art, no
impact at all. And so I feel that art is too —

LU: You make a few art pieces though.
DAVE: Well —

LU: Yeah, it’s funny hearing you criticize using art, because
from my perspective, you seem to do a lot of art.

DAVE: What? What!?

LU: Yes, I mean, I would —

DAVE: Name one!

LU: The SelfImage. That’s art! (See Fig. 2.)
DAVE: Okay, I see that as computation, I guess.

LU: This is how I see it. I think you’re in this world of trying
to get different fields to put their heads together, and learn
from each other.

DAVE: Yeah.

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

LU: And maybe you see a divide between the “art world”
and the “non-art world” But for me, it isn’t helpful to draw
these lines when trying to bring the different fields together.

I accept that you don’t need to open with art. You can open
with something else and then sucker-punch with art, right?

DAVE: Yes, yes, yes, it’s like “just kidding, it was all a
dream”.

LU: “It was art the whole time”.

DAVE: For the SelfImage in that sense, you are 100% right.
There is an art component to it, and a marketing component
— an attempt to be viral, which I have completely failed at.

LU: Except —

DAVE: Well I mean, everybody wants the next zero on their
views, on their citations, on their patreon, whatever it hap-
pens to be. But 'm still only down at the sort of two to three
zeroes range, so, you know, I can legitimately claim lack of
virality, and — well, anyway, that’s another topic.

LU: Yeah okay, I just think it’s good I got you to admit that
the SelfImage is art.

4 The nature of natural code

DAVE: The canonical Chomsky hierarchy stuff [11] is all
about languages having compositional, recursive, syntactic
structures, allowing language users to create open-ended
complexity. And I think that’s great, but it doesn’t go nearly
far enough. On their own, syntactic properties are almost a
detail. There’s other ways to get modularity, complex repre-
sentations, and so on. For example, you could just list chosen
words in a random order — “wood, hammer, nail” — and
it could create a notion in the listener’s head that could be
quite rich, with hardly any syntax.

LU: Splinters.

DAVE: Right. Sore thumb. So 'm hesitant to embrace the idea
that it’s all about language and which structural properties of
language are important. I think that’s wrong. Instead, I want
to talk about “code”, and not “programming language”. And
by saying code, I want to rope in signals, gestures, grunts —
stuff that seems below the level of programming languages.

4.1 Starting from signals

LU: Okay, “code” “code” “code”. Not just language. I think
that’s right. You can get too focused on the structure and
syntax of language. I think it’s more important to think about
the purpose of language — the purpose of code, I mean.
When I was a teacher, I worked with very young children
who struggled to communicate with other people, for various
reasons. It wasn’t that these children necessarily struggled
with language. In fact, some of them were hugely competent
with language and its syntax. They struggled with communi-
cation in a more general sense, which can sometimes involve
no syntax or language at all. It can mean “prodding someone”,

Lu Wilson and David H. Ackley

“looking at someone”, or simply “tugging on their hand” to
pull them along.

The first step that we always tried to get across to these
young children was, “look at all the good things you can
get from interacting with someone”, and we used a lot of
biscuits.

Most children love biscuits, right?

DAVE: Cookies.

LU: And if you can tell them, “look, you can prod me, point
at a biscuit, and I will give you a biscuit”, then you
can show them the purpose of communication. And in some
way there’s very little syntax or structure to learn there.

For the next step, we did this thing called PECS with some
of the children. It’s a Picture Exchange Communication Sys-
tem [9] where they can give me a little bit of card that has a
picture of a biscuit on, and I give them a biscuit in return. So
the key thing here is the code. This card is this executable
program. It says “give me a biscuit”.

The funny thing is, once a child realizes, “oh I can get
what I want from this” and “I can make people do things”
then they quickly become very motivated to learn how to
communicate more complicated things.

DAVE: That’s great. I do think you’re right. That example
gets to the heart of what bugs me about abstract language
discussions versus all-in natural code.

What matters is that a communication occurs, and that it
causes something to happen. It causes the world to become
better for the transmitter. If the act of transmitting code, by
holding up that picture card, actually leads to “yum yum” then
all the syntax and stuff can come later. I think it could really
help if we thought of programming languages starting from
no syntax, starting from just signals.

4.2 From spatial computing to symbols

DAVE: A key aspect of what you said is that it relies on spa-
tial computing [e.g., 1, 24]. You said “point at the biscuit
and I will give you a biscuit”. That depends on being
physically close to the thing that you're indexing because
you cannot say “biscuit” yet. You don’t know how to do
that, but when it’s close enough, you can just indicate that
thing right there. And that’s how semantics begins.

Then going to the cards is great as a next step because that
is an example of a pointer dereference. You have a symbol
that, physically, is just some ink on paper, and yet it can refer
to a biscuit, and program someone to bring it to you, even if
it’s in another room, out of sight.

LU: We talked about it as “symbols”. That’s the terminology
we used in that field of education, and it’s the terminology I
use now when I talk about coding. That symbol could be the
child pulling on your coat, or a particular made-up sound,
as long as you know that it means “biscuit”.

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Dialogues on Natural Code

DAVE: Right right, it could be anything. All that matters is
that there’s a shared understanding. It’s a little specific APL

4.3 “Natural code” as a symbol

LU: When we saw children make a jump to verbal language,
it was often when those first symbols just became more in-
convenient. Getting out the biscuit card from your little pack
of cards becomes a chore. Then you realize that it’s much
quicker and more effective to just say the word, “biscuit”.

And now I see that happening with me and you too. Some-
times, I want to refer to a concept that we’ve previously
discussed, but in a much more concise way, and we don’t
have a word or symbol for that concept yet, so we keep hav-
ing to go through it in its entirety again and again. I mean, we
can edit that out in the essay, but it’s very time-consuming
for us right here, right now.

So the solution, of course, is to make a symbol that can
serve as an abstraction. We need a word that we can deref-
erence to get a whole concept. And that’s what the term
“natural code” can be. It can refer to this shared understand-
ing that we’re building,.

DAVE: I see. So now, now you’re at a meta level.

LU: “Natural code” is a symbol. It’s a namespace. It’s an API
that we can use to make our communication more effective.
But it only works if we both understand what it means, so
that it’s a compatible format for us both to use. That’s exactly
what we’re doing in these dialogues — we’re developing a
shared language — we’re developing our shared codebase.

5 The SelfImage API

LU: So, Dave: What is the SelfImage API? I know from your
video [4] that it has four processes, but what does it mean?

DAVE: Fields like philosophy and religion and science offer
us language to talk about what kind of machines we all are.
Like, “I think therefore I am”, or “I am a collection of
neurons”.

LU: Or “We are made up of needs and wants and motivations”,
or whatever.

DAVE: Right. All of these languages contain some germ of
truth, but none of them are going to be wholly sufficient to
answer all of the variety of questions that we might want to
ask. So what we need to do is choose multiple approaches —
multiple languages. I think of them as “APIs”. They’re clearly
not perfect, and don’t cover everything, but they emphasize
certain parts, and make it easier to express some concepts
versus others.

So the SelfImage (see Fig. 2) is such an APL It depicts us
as arrangements of four computational processes:

1. Input: Handling influences from our surroundings,
2. Output: Performing work on our surroundings,

3. Sequence: Changing internal states over time, and
4. Judge: Assessing situational desirability.

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

If we’re interested in how we understand the world around
us, we’ll focus on the input process. If we want a deeper
understanding of how we actually create and do things in
the world, we’ll unpack the output process, and so on.

The SelfImage is a really basic framework to see ourselves
through a computational lens. It’s a starting point.

5.1 API design

LU: To me, the SelfImage API seems no different than a
psychological model that aims to describe how people be-
have. It reminds me of something like Maslow’s hierarchy
of needs [15], or operant conditioning [21], even.

DAVE: Ah, okay. What I'm suggesting is that, by taking
the computational metaphor, the SelfImage API can simul-
taneously describe both people and other programmable
machinery. That’s one difference.

And secondly, I'm claiming that the SelfImage API leads
more directly to implementability than a psychological de-
scription, because it uses the language of computation.

LU: So it’s not solely a descriptive model?

DAVE: Right. It can be a blueprint. It can be a recipe for how
to build machinery.

LU: Okay, it seems more like a design challenge — you want
to make an API that’s useful, regardless of how truthful it is
as a description.

DAVE: A scientific theory succeeds when it gives us an
unexpected truth. But that’s not the goal of an APIin software
design. We want an API to be as unsurprising as possible.
We want to adhere to the law of least astonishment. [22]

Ideally, an API should not teach us anything new. The
goal of an API is to be obvious, and that’s what we can judge
it on — how universally obvious it is.

LU: I think I get it. It’s more like user experience design, in
a way. It’s a communication tool that lets us talk about the
world in a certain way — under a computational lens.

It should be as easy and straightforward to use as possible.

5.2 Shared code

LU: Sometimes, when I'm developing computer code, I use
some tooling to help me, like Google Chrome’s DevTools, to
see what code is being executed, where it crashes, and so on.

But sometimes the tooling doesn’t show me enough help-
ful information, so I draw my own visualizations of my code’s
execution — on a piece of paper, or a whiteboard, or a virtual
whiteboard like tldraw [23]. It could be a drawing of a state
machine, or a flowchart, or a memory layout. Regardless,
my drawing is a highly simplified version of what’s actually
happening in execution.

On top of that, my drawings become a shared language
that I can use to communicate with my colleagues. They can
look at my visualization and understand what I'm trying to
achieve. And if they have a suggestion for how to improve it,

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

Lu Wilson and David H. Ackley

LIVING E;]_1? APRIL 2024
COUPUTATION The SeltImage API L 2o
The SelfImage is a core natural code
THE FOUR SAMPLE ibi i
B FOUR BNMPLES framework for describing organisms and

recognize az
look.read fouch

PErce1ve smell
hear SCCe ¢

receive

.. move

Wrlte sing acte?
perform dOmefke
Work\ K
transmit™ Spea

.expect
predictplan _
inferthink =

count brainstorm
reason fantasize

—
@ ange ChOQ SC encourage

SelfImage
core visual
iconography

implementing machinery. Especially
suited for programmable systems such
as people and digital computers.

Key API features:

* Clean process-first design

* Very obvious, compact & memorable

» Widely implementable

* Core judgment process supports
first-class distributed agency

* Unlimited usage rights

API requirements:
* Metabolism / Power & Cooling

pa DN support
N etddecide vt
oppose N0 “evaluate ple love (& desire

Judge criticize — conclude e

PUBLIC
DOMAIN

* Persistent modifiable state
(if using programmability)

Figure 2. The SelfImage API datasheet cover. To propagate successfully, even the most complex and subtle ideas must also
have small and memorable representations. If the idea creators fail to provide them, the idea consumers — if there are any —
must and will. Here, as an example, the SelfImage API begins with four simple words and a single shape.

they can communicate with me via the shared model. They
can draw on it, or edit it, or make their own version. It’s a
shared API we have between us.

To me, the SelfImage API feels like a similar kind of vi-
sualization. It’s not necessarily an accurate representation
of what’s going on inside my machine, but it’s a helpful ab-
straction that allows me to think through how my code is
executing, and how it could be improved.

DAVE: Yes, absolutely. The diagram is still much simpler
than the code and the machine it’s depicting, but it has value
in the moment. All we really need is to be confident that the
diagram is implementable.

When we derive a diagram from running code, we know
the diagram is implementable, because “here’s an imple-
mentation”. But if we add another arrow, say, the diagram
may no longer be implementable in the existing code. And
that tension, between simplified abstractions and actual im-
plementations, is what code development is all about.

If there’s a small set of abstract but widely implementable
processes with a lot of descriptive power, we should give
them a name to go by. That’s all the SelfImage API is.

6 Developing natural code

LU: Okay, imagine I've bought into the “natural code” idea,
and now I want to put it into practice — I want to start devel-
oping “natural code”.Iwant to improve the shared codebase!

Well, that feels really hard to do, because the concept is so
unsatisfyingly vague. How do I actually develop “natural
code”? Can you spell it out for me?

DAVE: I've been accused of being too vague before, and to
some degree I will plead guilty to that. But also, that’s just
the nature of APIs. The whole idea is that they’re abstract. I
mean, like a linked list is utterly vague about what’s inside
it. It’s utterly vague about exactly how many items you’re
going to need in the list, and so on. That’s by design. That’s
the point. It’s compatible with a wide range of uses, and the
SelfImage API is the same.

LU: Right, I see. And I saw in your video [4] how you’re
using the SelfImage API as a model for some example com-
putations, like “The Daydreamer” 0 (see Fig. 3). But, in all
honesty, it feels like you could put anything in there.

DAVE: I hope that you could model anything — at least, any
implementable machine — with the SelfImage API, because
it’s deliberately trying to be as general as possible. Like, if
either of us think some example is not implementable, then
we should focus on that until we reach some shared notion
of an implementation strategy. Or maybe we discover there’s
some deeper bug with the API, and we need to back up.

LU: Okay so perhaps the vagueness of natural code is actu-
ally a feature?

DAVE: Yeah it’s Vagueness As A Service.

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
8

0
r

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

925
926
927
928
929
930
931
932
933
934
935

Dialogues on Natural Code

LIVING
COMPUTATION

FOUNDATION

The SelfImage API

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

APRIL 2024
v16.10

COMMON GRIPS: TYPICAL PROCESS DEPLOYMENTS

"Stimulus-response” "Observer" "Motormouth" "State Machine"
L Transition
UNUSED Thinking Sequencing function
Undriving & X N “‘ LN
undriven; hi-Z EDZ):) Ei)§ !)E;) })‘)5)
Stimulus Response Watching Blabbing Input Output
DYNAMIC
Driven & driving;
ac‘lvetra“ts,m"m; "Flow State" "Daydreamer" "Depressed” "Parametric Search"
computing Guessienerating
. - &
\:| Fantasizing Ruminating 7715 ‘
4 & &)t
STATIC D> LS Linies))
Boundary Current Immediate constraints Guess
conditions; situation a‘ reaction B testing
constraints; LO\l/%ng Loying Hating P > 2 Q:fjﬁ))
it it Search Search
parameters fails Msucceeds

Figure 3. Sample applications page from the SelfImage API datasheet. Though informal, rough, and categorical, such simple
visual representations of SelfImage configurations —“grips” — may offer insights. For example, highlighting the similarities
between “Parametric Search” and “Depressed” might possibly be useful to an organism stuck in the latter grip.

6.1 Traditional programming

LU: And what about this? One reviewer felt that “natural
code” doesn’t help with traditional programming — so it’s
maybe off-topic for Onward! Essays.

DAVE: It’s true we didn’t stress implications for traditional
programming, but I think there are some basic connections.

LU: And what are they?

DAVE: One way natural code informs traditional program-
ming is by shouting “Snap out of it! It’s time to get
over hardware determinism!” And abandoning hardware de-
terminism drives a focus on robust-first programming [6].

LU: Yes. I guess, with the MFM architecture [7], and T2 Tile
Project [3], you’ve made a case for a new, non-deterministic
kind of computer architecture. But that involves switching
to a whole new hardware stack. Does robust-first speak at
all to people programming on traditional hardware?

DAVE: Well, yeah, if the computing model is big CPU and
big flat RAM and hardware determinism, serious robustness
is scarcely an option. But still, natural code can at least offer
support for some programming concepts over others.

LU: Like what?
DAVE: Well, here’s three:

1. Event-driven programming: Prefer dialogue over mono-
logue — shorter code sequences interacting.

2. Self-stabilizing code: First be robust, then as correct as
possible, then as efficient as necessary.

3. Minimize state: Prefer recomputing over caching where
possible; let the world be its own representation.

And maybe overall, natural code says be wary of people
advocating correctness and efficiency only. I think traditional
programming needs to hear that!

6.2 Debugging natural code

LU: I'm thinking back to when I said that “programming other
people” seems cold and —

DAVE: And how do you feel now?

LU: Well, I still think it seems cold. And I can see that
“coldness” blocking some people.

But I see you're not saying it for a cold-hearted reason.
Instead, it’s a way of thinking deeply about our communica-
tions, that will allow us to try to figure out how to become
more compatible with each other, right?

My natural code is going out and yours is coming back.
And maybe we’re not hearing each other. Maybe we’re not
on the same page. Maybe we’re struggling on the same thing.
Maybe we’re both trying to improve the world in the same
way, but we’re not able to work together. We’re not able to
understand each other in some way.

And you have this idea of “Right, let’s look at this

»

in natural code terms’. Let’s try to look at where our

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

code is incompatible.” “Let’s try to find a shared code
that we both understand.” “Let’s try to transpile the
code between us.”

DAVE: In the secret fortress of solitude in our heads, we
are all trying to get what we want, but there’s this huge veil
of silence over that fact. We don’t quite admit it, because it
doesn’t sound good. It sounds selfish, and so people ask, “Do
you do good because you’re actually trying to do good
or just because you’re selfishly trying to make people
give you the results of being good?” Well, so that is an
example of something that can be cleared up by taking this
point of view of code transmissions.

We are coders. We're all trying to get what we want. And
because we’re alive, what we want tends to be stuff we think
will help us persist and survive in the world. And cookies
are a proxy for survival because we need energy to persist
and sweets are a proxy for energy. So we think we’re helping
ourselves persist, and it’s “yes, yes, cookie, yes” from the
hardware. Then we end up looking like me.

LU: And I think that most of us, as adults, we pick that up
implicitly, right? We learn that we can influence other people
by deploying code, verbally or otherwise. Like saying “Hey,
duck!” to someone and they duck.

But some of these children I worked with — for one reason
or another, they struggled to pick this lesson up implicitly, so
they had to explicitly learn it. And they often ended up un-
derstanding it better than many of their peers, who did learn
it implicitly. These children gained mastery over communi-
cation by debugging it when it wasn’t serving their interests
as well as it could have. Perhaps more people could benefit
from this kind of explicit debugging of their communication
— of their code transmission.

DAVE: Right! We can often see implementations most clearly
when they break down. The children’s code wasn’t executing
the way they wanted, and that’s frustrating, so you worked
together to debug that. You made super-accessible communi-
cation channels, so step by step the kids could start choosing
to transmit code that makes their world better.
—

DAVE: Once we admit, or once we just decide, that language
is code, then the natural code framework says it’s all about
acts of code transmission. Some transmission through space
from A to B at time C: What code shipped? Did that trans-
mission happen for a good reason? Would we rather widen
that channel, or maybe block it? All such questions are fair
discussion topics among “natural coders.

The overall goal is to debug the great machine and improve
its codebase. Close up, between us, the purpose is to find a
win-win, so I understand what your language means in my
terms and vice versa — so we can share code effectively and
our collective distributed machine works better. And I think,
if we choose to be resolutely explicit about that — that we

10

Lu Wilson and David H. Ackley

are coders, we are developers, and we’re trying to debug the
machine — we might all be happier and more productive,
and our world more robust and sustainable.

6.3 Buggy code

DAVE: But unfortunately there are also grifters, who deliber-
ately and knowingly ship buggy code, where the transmitted
narrative is a trick to cover theft, or corruption, or other evil.
LU: People sowing division, spreading misinformation —
DAVE: Even good people can ship bad code in moments
of weakness. They know in their hearts that the code isn’t
exactly right, and that its bugs benefit the transmitter. In
tiny ways at least, it’s like nobody is completely without
sin, so typically all remain silent. And the result is that good
people’s petty hypocrisies enable other’s great crimes.

LU: Some bugs are bigger than others.
LU: One of the reviewers expressed concern that natural
code can be misused.

DAVE: For sure. Natural code gets misused a lot.

LU: Yes, it’s happening already, all around us, whether we
explicitly acknowledge it as natural code or not, harmful
natural code is being shipped and —

DAVE: And we’d be better off acknowledging that —

LU: Because then we can be more explicit about naming it
as such, and calling it out, and then —

DAVE: And then we can start talking like developers, and
get down to debugging our shared natural codebase.

7 Owning our natural codebase

DAVE: Okay another run at a summary: There are many
many ways to describe things. On the one hand, they are
not all equally good for all purposes, but on the other hand,
there’s no one language that’s “uniquely most true” either.
You talk differently to your grandma than to a colleague or
friend, because different code receivers understand differ-
ently, and have different shared dictionaries between you.

So the claim has two parts. First: We have to make choices
about how to describe and understand ourselves and the
world. We cannot delegate those choices, even if we really
want to — not to other people, not to the universe itself. And
second: One choice should always be that we are coders.

It’s about all our code transmissions, natural and artificial.
Is it all a metaphor? Sure, if you need it to be, but I'll still
claim it’s a simple and powerful basis for understanding and
improving our shared computation.

So natural code will be one of many ways of describing
and building things. It won’t erase art, or philosophy, or any
of those things. But it will always be available in addition.
“Let’s consider this in terms of natural code.”

7}%,7

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Dialogues on Natural Code

LU: Over the last months we have attempted to own the ideas
of natural code — struggling towards shared understanding
where previously there was none. My hope is that other
people will see our example and become inspired to do the
same, though we cannot know for sure if that will happen.

DAVE: Indeed. We can only do what we can, and it won’t
all be easy. I hope that, once they see themselves as natural
coders, people of good faith everywhere will work for a better
shared codebase. I do have hope.

—
LU: To me, natural code is about building bridges, and getting
people to work together — to name and call out the bad code,
while celebrating the shipping of better code.

To do this, we may as well talk in terms of natural code. We
may as well talk about developing our APIs, and debugging
our difficulties, and improving our codebase. And I do believe

that more and more people will join us on this, and become
more deliberate about being natural coders.

DAVE: And this is just a beginning.
LU: “Step by step”!
DAVE: Step by step.

References

[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George
Homsy, Thomas F. Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay
Sussman, and Ron Weiss. 2000. Amorphous Computing. Commun.
ACM 43, 5 (May 2000), 74-82. https://doi.org/10.1145/332833.332842

[2] Dave Ackley. 2004. Machines. Retrieved April 22, 2024 from https:
//livingcomputation.com/Ic/d/ae/machine.html

[3] Dave Ackley. 2015. Living Computation: Robust-first programming
in ULAM. Video submission (accepted) to the Future Programming
Workshop at SPLASH 2015, Pittsburgh. Video retrieved July 2024 from
https://www.youtube.com/watch?v=14flQ8XdvJM.

[4] Dave Ackley. 2021. We Are Coders - HSA101.2: Hypersubspaces. Video.
Retrieved April 22, 2024 from https://www.youtube.com/watch?v=
ScYgBxLupAs

[5] Dave Ackley. 2024. Thank you Dan. Retrieved July 17, 2024
from https://livingcomputation.com/lc/morning/202404201125-dan-
dennett.html Also appeared in the 16th The Artificial Life Newsletter,
at https://alife-newsletter.github.io/Newsletter/edition_016.html.

[6] David H Ackley. 2013. Beyond efficiency. Commun. ACM 56, 10 (2013),
38-40.

[7] David H. Ackley, Daniel C. Cannon, and Lance R. Williams. 2013. A
Movable Architecture for Robust Spatial Computing. Comput. 7. 56,
12 (2013), 1450-1468. http://dx.doi.org/10.1093/comjnl/bxs129

[8] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. 1977.
A Pattern Language: Towns, Buildings, Construction. Oxford University
Press.

[9] Andrew S. Bondy and Lori A. Frost. 1994. The Picture Exchange
Communication System. Focus on Autistic Behavior 9, 3 (1994), 1-19.

[10] Tristan Bove. 2021. Techno-Optimism: Why Money and Technology
Won’t Save Us. (June 2021). Retrieved July 10, 2024 from https:
//earth.org/techno-optimism/

[11] Noam Chomsky. 1956. Three models for the description of language.
IRE Trans. Inf. Theory 2, 3 (1956), 113-124. http://dblp.uni-trier.de/
db/journals/tit/tit2n.html#Chomsky56

[12] Daniel C. Dennett. 1987. The Intentional Stance. The MIT Press,
Cambridge, MA.

11

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

[13] Christophe Dupre and Rafael Yuste. 2017. Non-overlapping Neural
Networks in Hydra vulgaris. Current Biology 27, 8 (24 Apr 2017),
1085-1097. https://doi.org/10.1016/j.cub.2017.02.049

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides. 1994. Design Patterns: Elements of Reusable Object-
Oriented Software (1 ed.). Addison-Wesley Professional.
http://www.amazon.com/Design-Patterns-Elements-Reusable-
Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

[15] A. H. Maslow. 1943. A theory of human motivation. Psychological
Review 50, 4 (1943), 370-396. https://doi.org/10.1037/h0054346

[16] Steve Muir. 2004. The Seven Deadly Sins of Distributed Systems.
In First Workshop on Real, Large Distributed Systems (WORLDS 04).
USENIX Association, San Francisco, CA. https://www.usenix.org/
conference/worlds-04/seven-deadly-sins-distributed-systems

[17] Jakob Nielsen. 2024. Accessibility Has Failed: Try Generative Ul =
Individualized UX. (February 2024). Retrieved July 10, 2024 from
https://jakobnielsenphd.substack.com/p/accessibility-generative-ui

[18] Markus Oberlehner. 2020. Retry Failed API Requests with JavaScript.
Retrieved April 22, 2024 from https://markus.oberlehner.net/blog/
retry-failed-api-requests-with-javascript/

[19] Arnon Rotem-Gal-Oz. 2008. Fallacies of Distributed Computing Ex-
plained. Doctor Dobbs Journal (01 2008).

[20] Carlos J Sanchez, Chen-Wei Chiu, Yan Zhou, Jorge M Gonzilez,
S Bradleigh Vinson, and Hong Liang. 2015. Locomotion control of
hybrid cockroach robots. 7R Soc Interface 12, 105 (April 2015).

[21] B.F. Skinner. 1938. The behavior of organisms: an experimental analysis.
Appleton-Century, Oxford, England.

[22] R.N. Southworth. 1967. PL/I bulletin no. 5. SIGPLAN Not. 2, 12 (Dec
1967), 1-71. https://doi.org/10.1145/1139502.1139504

[23] tldraw Inc. 2022. Virtual whiteboard. Retrieved April 22, 2024 from
https://tldraw.com/

[24] Franco Zambonelli and Marco Mamei. 2005. Spatial Computing: An
Emerging Paradigm for Autonomic Computing and Communication.
In Autonomic Communication, Michael Smirnov (Ed.). Lecture Notes
in Computer Science, Vol. 3457. Springer Berlin / Heidelberg, 227-228.
http://dx.doi.org/10.1007/11520184_4

[25] J. F. Ziegler and W. A. Lanford. 1979. Effect of Cosmic Rays on
Computer Memories. Science 206, 4420 (1979), 776-788. https:
//doi.org/10.1126/science.206.4420.776

Revised 18 July 2024

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

https://doi.org/10.1145/332833.332842
https://livingcomputation.com/lc/d/ae/machine.html
https://livingcomputation.com/lc/d/ae/machine.html
https://www.youtube.com/watch?v=I4flQ8XdvJM
https://www.youtube.com/watch?v=ScYgBxLupAs
https://www.youtube.com/watch?v=ScYgBxLupAs
https://livingcomputation.com/lc/morning/202404201125-dan-dennett.html
https://livingcomputation.com/lc/morning/202404201125-dan-dennett.html
https://alife-newsletter.github.io/Newsletter/edition_016.html
http://dx.doi.org/10.1093/comjnl/bxs129
https://earth.org/techno-optimism/
https://earth.org/techno-optimism/
http://dblp.uni-trier.de/db/journals/tit/tit2n.html#Chomsky56
http://dblp.uni-trier.de/db/journals/tit/tit2n.html#Chomsky56
https://doi.org/10.1016/j.cub.2017.02.049
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://doi.org/10.1037/h0054346
https://www.usenix.org/conference/worlds-04/seven-deadly-sins-distributed-systems
https://www.usenix.org/conference/worlds-04/seven-deadly-sins-distributed-systems
https://jakobnielsenphd.substack.com/p/accessibility-generative-ui
https://markus.oberlehner.net/blog/retry-failed-api-requests-with-javascript/
https://markus.oberlehner.net/blog/retry-failed-api-requests-with-javascript/
https://doi.org/10.1145/1139502.1139504
https://tldraw.com/
http://dx.doi.org/10.1007/11520184_4
https://doi.org/10.1126/science.206.4420.776
https://doi.org/10.1126/science.206.4420.776

July 19, 2024

Onward Essays! Program Committee
via Internet

To whom it may concern,

This letter documents the changes made to our Onward Fssays! submission #4
— entitled Dialogues on Natural Code — since it was conditionally accepted on
June 6, 2024.

We thank the reviewers, and especially our paper shepherd, for their extensive
comments and assistance. The essay is much better for their contributions.

We have made extensive revisions, ranging from small wording changes to new
sections and an overall paper reorganization. All these changes are visible in
the attached diff, and we have outlined them all below.

Reviewer A concerns

e Clarity of experimental style: Reviewer A stated that they enjoyed the
experimental style of the essay, but found it difficult to orient themselves
at times because of it. As suggested, we have renamed some headings to
help signpost the reader better. We have also added an additional top-
level section, “The Selflmage API”, to help create a more coherent flow.
And we have added box formatting to a key early sentence, to emphasise
the main goal of the essay.

Reviewer B concerns

e Purposeful dialogue form: Reviewer B suggested that the “dialogue
form” of the essay was not always effective. It was best when it served a
purpose in expressing the essay’s points, but could be distracting when it
did not. Therefore, we removed some moments of meta-dialogue that did
not add to the essay’s message.

e Jarring shift of dialogue style: Reviewer B noted that there were
some jarring shifts in the essay’s dialogue style. It suddenly changed from
quick-fire back-and-forth to longer monological paragraphs, which broke
the flow of reading. We have now smoothed out these transitions with
small interruptions in some of the longer monologues.

e Undefined terms: Reviewer B noted that some terms, such as “pattern”,
were used before being defined, due to the non-deterministic nature of the
essay. In this case, we reworded the sentence in question to give the reader
more context about what we mean by the term.

e Prior art section: Reviewer B stated that the “Prior art” section did not

feel appropriately named, as it did not include related work — it included
other content instead, such as the “Selflmage API”. As suggested, we
have now pulled out the “Selflmage API” parts of the essay into their
own top-level section, and we have added examples of related work within
the “Prior art” section.

e FOMO: Reviewer B noted that the term “FOMO” might not be familiar
to all readers. We have now added a brief explanation of the term within
the dialogue.

e Selflmage API detail: Reviewer B commented that we should provide
more detail about the “Selflmage API” as it seems to be an important
part of the essay to understand. As mentioned already, it now has its own
top-level section, and more focus has been placed onto it.

We have also moved the Selflmage API section to a later position in the
essay, based on followup feedback from our shepherd. The purpose of
this move was to let the reader become more familiar with the concept of
“natural code” before introducing them to the Selflmage API. We hope
that this will increase the chance of the reader understanding the model.
This new section also includes the “Shared code” subsection in order to
provide more immediate context around the purposes of the API.

And we have added more detail to the captions of the Selflmage’s figures,
giving more context on terms like “grip”, which Reviewer B found unclear.

e Delivering promises: Reviewer B commented that it felt like the essay
did not deliver what had been promised by the “Developing natural code”
section heading. We have now padded out this section with further exam-
ples and detail, such as the new “Traditional programming” and “Buggy
code” subsections, to try to better deliver on this promise.

e Backfilling conclusion: Reviewer B commented that the conclusion sec-
tion did well at grounding the essay, and we should consider bringing some
of this into earlier parts. We did this through a new “Buggy code” sub-
section, and we also brought some of the conclusion’s themes to the very
start of the essay, within “Coldness and evil”.

o Ackley references: Reviewer B shared that they were able to understand
the essay better after exploring some of Dave Ackley’s previous work. We
added more references to Dave’s work to address this.

Reviewer C concerns

e Technocratic undertones: Reviewer C shared their concerns about the
essay’s “ideological, technocratic undertones”. To address this, we added
a substantial new subsection that discusses this concern directly — at
an early point in the essay. We also brought forward a dialogue around
“coldness” into this early section, to try to establish a more humane tone
from the beginning.

¢ Helping understanding: Reviewer C noted that it was unclear how the

model helps to understand anything. To address this, we have now added
further examples of domains in which a natural code approach can be
helpful, such as accessibility and climate. We also added a new subsection
about how natural cocde can impact our understanding of “traditional
programming”. And we have tried to clarify the role of the Selflmage API
by giving it its own dedicated section, as mentioned previously.

e Misuse: Reviewer C noted that the essay only acknowledges the potential
misuse of natural code in the very final section. We have now brought this
dialogue forward to an earlier section, and we have given it some more
room and discussion.

e Relevance to programming: Reviewer C suggested that the essay
might not relate closely enough to “programming” to be suitable for On-
ward! Essays. To address this, we added a new subsection highlighting
ways in which natural code can inform traditional programming practice.
We also added a subsection on related work to help ground the essay in
works that are well-known to the programming world.

e Machine example: Reviewer C noted that one of our examples of a
“machine” seems to contradict our previously stated definition. We have
expanded on that example to clarify our thinking around it, while also ac-
knowledging the example’s flaws. We have offered an alternative example
within the same dialogue — one that more easily fits our definition.

e Monospace font size: Reviewer C commented that the monospace font
of the quoted fragments was too large, and it wasn’t clear what they
were being used for within the visual language of the essay. We have now
reduced the size of that font, and we have made use of it more consistently
throughout the dialogues.

Best regards,

Lu Wilson & Dave Ackley

G R W N

~

Dialogues on Natural Code

Lu Wilson
TodePond
London, UK
todepond@gmail.com

\\\\\\\II//////%

David H. Ackley
Living Computation Foundation
Placitas, New Mexico, USA
ackley@livingcomputation.org

Figure 1. The SelfImage starburst.

Abstract

This essayis-a-loosely-edited-collage-, based on a series of dis-
cussions between the authorsthat-teek-place-in-—early2624;

as-we-worked, is a loosely edited collage in which we work
to flesh out our shared interests in non-traditional machines

and coding mechanisms. We primarily focused on the idea
that all human language can usefully be viewed in program-
ming language terms — as “natural code”. Programming lan-
guages and natural languages differ in many ways, such as
having relatively formal definitions versus not, emphasizing
strong syntax versus large dictionaries, and demanding rigid
implementations versus building on the vagaries of living
systems. Still, we saw deep unities as well, much more than
mere metaphor, and we glimpsed the possibility of applying
humanity’s decades of programming language design and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH °24, October 20-25, 2024, Pasadena, California, United States

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

software engineering experience to the task of debugging
and refactoring the natural codebase that we all share. These
fragmentary and overlapping dialogues represent both a de-
scription and an example of natural code, and we offer them
here, with a simple “natural API” illustration, in hopes of
programming people to join in natural code development.

CCS Concepts: « Software and its engineering — Very
high level languages; - Computing methodologies — Dis-
tributed computing methodologies.

Keywords: Natural Code, Human Computation, Robust API
Design, Implementability

ACM Reference Format:

Lu Wilson and David H. Ackley. 2024. Dialogues on Natural Code.
In Proceedings of XXXXXXX (SPLASH ’24). ACM, New York, NY,
USA, 13 pages. https://doi.org/XXXXXXXXXXXXXX

1 Being machinery

DAVE: I think living organisms can be meaningfully viewed
as machines.

LU: Sorry, what?

DAVE: They’re physical arrangements of matter that move
and do work. They have power supplies. Living systems are
machines.

LU: Including us?

DAVE: Including us. We’re machines.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

LU: Really? I don’t feel like a machine.

DAVE: I mean, people usually think of machinery as metal
and screws and batteries, and I have very few of those in my
actual living body.

LU: A non-zero amount?

DAVE: I want to take machines way beyond metal and
screws, and say: Any time matter is arranged in space, and
an energy supply is incorporated so that the arrangement
of matter and energy can do something — that’s what we’re
talking about as a machine. And that description is as true
for screws and metal as it is for people and amoebas.

LU: I don’t know if I want to think of myself as a machine
though.

DAVE: It can be uncomfortable, but when we go to the doctor,
say, we want them to be talking about us in mechanistic ways,
like “=he—tremmrrraiime— e e S e e
it—eouldthe heart machine is not working as well as
it could” or whatever. This framing of a living system as
a machine can be useful when we’re trying to understand
how it works, and how to make it work better.

1.1 Building machinery

LU: As well as being machinery, living things are also capable
of building machinery. That’s what you’re saying, right?
DAVE: That’s right. Machines that somehow work to pre-
serve their patterns-structures, their patterns, are what we
call “Fifelife”. Persistence involves maintenance and repair,
but also building copies.

LU: I guess so! Though I was thinking more about traditional
ideas of “buitding—maechinerybuilding machinery”, like a
beaver building a dam, or a wasp building a nest.

DAVE: That happens too. And humans build bridges, rock-
ets, and programmable computers. I think about “buitding
maehinerybuilding machinery” writ large. It can be some-
thing like lighting a fire, or folding a paper airplane, or mov-
ing a rock off a path.

LU: You're using the phrase “building—machinery>ery

building machinery” extremely loosely here, right? Because

to me, “building—machinerybuilding machinery” sounds
like “ereating—something creating something, or making

an artifact of some sort. But you’re using it to refer to what
seems like just an action, or a process.

“Lighting—a—firelighting a fire” doesn’t sound like

Lu Wilson and David H. Ackley

LU: You’re changing the arrangement of the burger’s ingre-

dients, and that’s what you’re calling “buitding—machin—

erybuilding machinery”. It’s not that you've “ereatedcreated”

these ingredients, but you’ve built them into a particular pat-
tern.

DAVE: Yes, you’re arranging matter to get certain properties.
—

LU: Okay that-makessense-to-me—Youso you said that a

burger is a machine and —

DAVE: The reviewers had some troubles with that.

LU: And I can understand their troubles. You said that a

machine can do something, but a burger just sits there.

DAVE: [— Fair enough. I understand. I mean, there are

many power sources for machines. You could have a battery,

or gasoline, or gunpowder. But you could also have a human.

LU: A human?

DAVE: Like, an old-fashioned well pump is a hand-powered
machine. You pump the handle, and water comes up out of
the spout and helps you live. It’s a human-powered machine.

And maybe a hamburger isn’t the cleanest example —
LU: It really isn’t the cleanest example.

DAVE: — but the hamburger machine runs on muscle power
too. You pick it up and chomp it on down, and it absolutely
does something: It feeds you and helps you live.

—
LU: You're stretching the use of the language quite a bit, but
what you’re saying is — when you’re building machinery,
you’re building a pattern.

I could have some LEGO bricks on my table, and they’re
all scattered around. I could build something new just by
moving them around. I could build a pattern, or a house.
Either way, I'm building machinery just by rearranging. Is
that how you see it?

DAVE: Right. Arranging matter. A house is a pattern too.

1.2 Hew-to-build-Contracting machinery

LU: And you’re saying there are two ways of building ma-
chinery? One way is to do it yourself, to build it directly.

DAVE: Wood, hammer, nail. Yeah.

building anything at all. It just sounds like enacting-a-changeenactinigU: And the other way is by getting another machine to do

a change.

DAVE: Yeah I screwed that up. Collecting wood and stuff is

building the machine. Lighting the fire is flipping its switch.
But, say you’re working at a hamburger joint, where all

you have to do is slap a burger on a bun and put on ketchup or

mayo, and it’s done. You're “buitding—a—machinebuilding

a machine” out of other complex arrangements of matter.

the work for you. You can instruct it to do the building on
your behalf. In this case, you're building indirectly.

DAVE: Yes, you find a programmable machine that’s out
there in the world already. You don’t have to build it yourself.
You ship some code, and have that machine do the work for
you. When you don’t have to send the wood or the tools,
code is incredibly cheap to ship. That’s its superpower.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Dialogues on Natural Code

LU: And that programmable machine could be anything we
can transmit code to, like a mechanical arm in a factory, or a
rocket, or a computer.

DAVE: Or we flip the switch on the wall. We want light.
LU: Okay, I see where this is going.

1.3 Human hardware

LU: You're saying that “the—programmable-machine—could
be—a—personthe programmable machine could be a person”.
DAVE: Right. As humans, we can transmit code to another
person and get them to do something for us. We can say,
“Hey, can vyou help me build this shelter?Hey, can
you help me build this shelter?” or “Can—you—buitd—=a
fire—while—T—gather—feed?Can you build a fire while
I gather food?”.

LU: I'd argue that animals do that too, right? Living things
often communicate with each other in some sort of way.

DAVE: It’s certainly a spectrum. Maybe an animal sends
a signal that means “runrun” or “dangerdanger” or “feed™
food”,

LU: Either way, you're saying that we can code one another.
Asking someone to do something is coding them, in a way?

DAVE: Yes, we transmit “ratural—cedenatural code” all
the time — when we talk with each other, or teach stuff to
our kids.

to wrap it all up in a box, I'd sa

I think we should use our knowledge of programming
languages, of software and computing, to examine
our own natural code. To understand it and debug it.
To make society better, and to improve our shared
codebase.

This is why [want to push for a view of computation broad
enough that we can see humans as programmable machines
— that are programmed by natural—code natural code”.

1.4 Coldness and evil

LU: Fsnean This idea that people “program” other people. To
me it seems — before-we-get-to-that-

DAVE: It seems really obvious, right? It helps us to — ene-
LU: No. Actually, I was going to say that it seems really cold.

DAVE: Oh. Well.

LU: It almost seems psychopathic, because it sounds like it’s
all about trying to manipulate other people.
DAVE: Well, I —

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

LU: But communication isn’t only for influencing people.
We also talk to share our feelings, and connect with others.
Or we just want to be heard, or rant, or share a joke.

DAVE: Right! And I think that’s a good —

LU: So we can’t boil down communication to just “getting
someone to do stuff’ because that’s cold, and it’s not true!

LU: Reviewer C is worried about “the ideological, tech-
nocratic undertones” of the essay, and “it’s a pervasive
fallacy in the tech world to see all our problems as

technological” and “Every human interaction is reduced
to a kind of programming”.

DAVE: Yeah. And how do you react to that?

LU: L was genuinely worried about this when we submitted,
because it’s something I agree with, There is this pervasive
fallacy to see all our problems as technological. I hate it,
and I see it time and time again,

Like recently, I've been hearing more and more people
around me saying that “all we need is better technology”
and all our computer accessibility issues will disappear.

DAVE: I just can’t imagine somebody saying that seriously.

LU: For example, I read a recent essay [? | saying that “AI
will soon come to the rescue” for accessibility.

Or take the climate crisis. There’s this fallacy that we
don’t need to worry about reducing our energy usage, or
replacing our energy sources [? | because —

DAVE: “We will technology our way out of it”. Carbon

capture, seeding the clouds, or whatever we can tell ourselves
to delay dealing with the real problems.

LU: Exactly. In these cases, the actual solution is to not see
the problem as mostly technological. Instead, the solution
is to try to change our behavior, both as individuals and
as a society. I think this is where natural code can help.
It can give us a new perspective and understanding of our
communications and how to improve them.

7%7
DAVE: One answer to such criticisms is that we are reading
the concept of “technology” broadly enough to include stuff
that’s not traditional technology. People can hear us say
“technology” and think it means traditional programming
languages and computers and “tradtech” generally.
LU: Right, we say “natural code can help us”but sometimes
people hear “traditional technology can help us’.

DAVE: But really we're saying “technology writ large is

much bigger than tradtech” and part of that is understandin
ourselves better — that we can be viewed meaningfully as

machines, and our communications can be viewed as code,
and we build more machines to help keep ourselves alive.
LU: And we exchange code with each other.

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

DAVE: For sure. We are coders. We ship code.
LU: I mean, it’s a tricky idea to sell. And it does sound quite

“technological’.,

DAVE: And I think we just have to own that. But we also
have to stress that judgment goes beyond just the tech. Shippin
code “to make money” is different than “to help society”, no

matter how tech hypocrites may try to conflate them.
—

LU: If anything, I think we are calling for fewer problems to

be seen as solvable by tradtech. For example, at work, we

wanted to make it easier to hear each other on our video

calls. We got new tradtech — software, microphones — but

still had problems.
DAVE: And the real solution was like “talk slower”?

LU: It’s mainly “avoid cross-talk” and “be sure to set up

everything properly”. In that situation, deploying “natural
code” is what improved things. We actually wrote up a document
— guidelines for behaving in meetings. And for me this is a

form of “natural code”,_

DAVE: Like how modern programming projects often have
an explicit “Code of Conduct” That’s “natural code”!

2 Beyond determinism

LU: Another obvious objection to this-these ideas is that hu-
mans seem really different to computer hardware, because
computers are absolutely rigid and repeatable. They’re de-
terministic, and humans are not.

DAVE: Deterministic execution of code has always been an
illusion. There’s always the possibility of cosmic rays coming
in and flipping a bit, say, and that does happen sometimes [?
]. But we know that we can engineer traditional computer
hardware so that the chance of that is small enough that we
can usually ignore it.

LU: But someone could still come and turn off your com-
puter’s power, right?
DAVE: Right, or overheat it.
LU: Or smash it with a hammer.

—
LU: In web development, when you do a “fetehfetch” re-
quest to an endpoint, you usually use your own special kind
of “fetehfetch” function that automatically retries a few
times [?].
DAVE: Right, because in the network world —

LU: In the network world, things can go wrong, and in fact,
they often do go wrong [? ?]. So you run the same code
again and again, to increase the chances that it will work.

444473854444,

DAVE: People certainly don’t do the same thing every time.

Lu Wilson and David H. Ackley

LU: So when we transmit code to a person, we can’t know
for sure what the effects will be. They might ignore us, or
say no, or do something completely different.

The essay might make no sense to them, or they might get
it but disagree. But even if the chance of convincing them is
low, we might still think that it’s worth a try.

DAVE: Yeah, maybe we’ll succeed. Maybe we won’t. The
machines executing the code of this essay are going to be
way non-deterministic.

S —
DAVE: I've been trying to get this-hatural—code message
ideas like natural code across for a long time [?], and it’s
been hard. People bring all of their traditional computing

misconceptions to it. And the idea of natural—cede natural
code just looks crazy to them.

LU: Has non-determinism been a blocker for some people?

DAVE: Some people would outright say “witheut—deter—
mfﬂfs%r%e*eeuﬁeﬁ—kt—s—ﬁe{—eempu%aﬁ%mthout

deterministic execution, it’s not computatlon.

DAVE: There’s this idea that “4+f—yeu—ecan’tpredict—ex—
actly—what—the—ecode—willdo,—it 11 be—-<chaoesif you
can’t predict exactly what the code will do, it’ll be
chaos”. My claim is no, ne;-netreally—

My—elaim-is-that-we can still talk in terms of computa-
tion and code, even if the “cemputercomputer” is not fully

deterministic.

Even if we only have a 51% chance that some code will
work versus a 49% chance that it won’t, say, we might still
want to run the code, again and again, for that 2% edge.

LU: I've been thinking about how we can get across this
“ron-determinism—ideanon-determinism idea”, and I won-

der if we can use the format of the essay itself to help us
dripfeed it throughout.

DAVE: Oh I see, bits of conversation out of order, and so on.

LU: Yes, we don’t need to be strictly chronological. We can
jump around and revisit things. When we transmit natural
code, we don’t know exactly how that code will be executed.
We don’t know what the exact order of execution will be
either, but we can still talk about it in terms of code and
computation. It’s still possible to do that.

DAVE: Perhaps also showing how we can bend the familiar
overall “syntaxsyntax” of a paper, but still transmit legible
code.

LU: Someone could skip ahead to the end of the essay, or
miss out a whole section, or just look at the diagrams.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Dialogues on Natural Code

3 Prior “art”

LU: But, Dave: Why put this essay forward as a submis-
sion to a programming language conference? Why not go
to a philosophy conference, or art“art”? Why enter through
programming languages as a lens?

DAVE: I mean ideallyiftherewas-alotsure, if we had more
time and alet-more collaborators, weweuld-'d go to all those

conferences — a full court press — and then the- FOMO would
descend, and then-the world would change.

LU: “FOMO” as in “Fear Of Missing Out”?

DAVE: Yes, if we could figure out how to —
LU: If we could market this "natural code” idea in all those

conferences, lots of people might get “FOMO” and get involved.

DAVE: And that would be great. But we can only do what we

can figure out how to do — can only do whatis~implementable’s

“implementable” for us at the time.

I do want to poke the bear a bit, and it seems appropriate
for a venue like Onward! Essays that’s explicitly aimed at
computation and programming languages writ large.

LU: Yeah, I see that. I think it’s helpful for you to share why
you’re coming through programming languages, because
people reading this might think there’s a particular reason
behind that. But it sounds like it’s partly just because that’s
where where-you're starting from.

DAVE: Right that’s my history. Code’s what I know best.

3.1 Historical traditions

DAVE: It’s like philosophy, psychology, and all those things,
are trying to describe what we are — what our touchstones
and key concepts are, how we see what we see, and so on.
I think, despite their great successes, such fields have deep
assumptions that limit how clear and effective they can be.

I think we should start again with notions of program-
ming languages and software engineering, but move beyond
deterministic execution. Then we can start talking about
our human collective computation in terms of APIs, pro-
gramming languages and structures, compositionality and
modularity, and so on.

The goal is: Whenever we speak, we can always know, or
plausibly believe, that what we are saying is implementable.
We could always, at least in principle, build a machine —
using ordinary silicon chips or exotic biological bricks or
whatever — that could run the code we’re shipping. Then we
point at the machine and say “T—mean—tike—thattl mean
like that!” And that’s what we cannot do with philoso-
phy or psychology or religion or anything, that we maybe
could do if we say “bet’s—pretendnatural—language—is

codelet’s pretend natural language is code”.

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

3.2 Implementability

LU: I would challenge the idea that natural—code natural
code is the only route to implementability. I think that neu-
roscience, say, or even physics, offers implementability in
some way.

I know there are studies out there where they’ve taken
an organism, a hydra vulgaris, and they’ve mapped out its
entire neural networks, and they’ve used that to get closer
to determining how the creature is implemented [?].

DAVE: I certainly do not want to say that natural code is the
only route to implementability. I would argue that it looks
like the most direct route to implementability.

Driving around a cockroach by putting wires into its
spine [?] is clearly building a piece of living machinery,
working at a pretty low level. But in the computation world,
instead of writing assembly code, we glue together giant
stacks of software and plug one abstracted part into another.

I would argue that, if neuroscientists build more machines
out of more neurons, displaying more complex behaviors,
they’ll stop talking about that overall machine in terms of
neurons. They’re going to start talking about it in terms of
inputs and outputs, and parallel and sequential processing —
in terms of computation and code.

LU: So you think that it all comes back to computation in
the end?

DAVE: Back to implementationimplementation. I find neu-

roscience and biology results inspirational for seeing how
nature does things. Many perspectives help! I argue that
natural—eode natural code is yet another point of view
that can be a useful framing for understanding our world,
and making it better.

Fhe-Seltfimage—APT datasheeteover:
3.3 Related work

LU: Okay, okay. ButI don’t think that this “Prior Art” section
actually covers any prior art so far. It feels like a rejection of
everything existing, Natural code can’t be that new, right?

DAVE: Of course, lots of things are connected. Dan Dennett’s
ideas had a big impact on me personally, for one.
LU: I saw you tooted a little remembrance about him. [?

DAVE: Yeah, he was so clear. With his notions of descriptive
“stances” [?], I see natural code as a way of connecting the

intentional stance with the physical and design stances.

LU:I'mreminded of Alexander’s pattern language stuff too [?

- His "patterns” are like code, describing how to solve various
problems through architecture and design. And there’s an
emphasis on the patterns being “tentative” and unpredictable.
There is a non-deterministic aspect to it.

DAVE: Right, and of course design patterns [?] have similar
flavors. Language not quite executable on a computer, but
very “code like” and absolutely executable on developers.

504

520

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

LU: For me, these examples demonstrate that we can spot

Lu Wilson and David H. Ackley

zeroes range, so, you know, I can legitimately claim lack of 606

aspects of natural code within existing works, perhaps implicitly, virality, and — well, anyway, that’s another topic. 607

and what we’re trying to do is—
DAVE: We're trying to explicitly frame things as code.

3.4 Blending fields

LU: Personally, I seek out the projects that aim to blend nu-
merous fieldstegether, like those that combine science and
art in some way, or those that try to bring together different
categories of research. It’s not always easy to do, but I think
it’s often where the most impactful work can be done — you
get to pick and choose the strengths of various fields, and get
the “best—ofboth—worldsbest of both worlds” in many

cases.

DAVE: Let me be completely honest. My problem combining
art with science is that the results often feel a bit like the
worst-of-bothworst of both. You know, not great science, not

great art, no impact at all. And so I feel that art is too —
LU: You make a few art pieces though.
DAVE: Well —

LU: Yeah, it’s funny hearing you criticize using art, because
from my perspective, you seem to do a lot of art.

DAVE: What? What!?

LU: Yes, I mean, I would —

DAVE: Name one!

LU: The SelfImageSelfImage. That’s art! (See Fig. 2.)
DAVE: Okay, I see that as computation, I guess.

LU: This is how I see it. I think you’re in this world of trying
to get different fields to put their heads together, and learn
from each other.

DAVE: Yeah.

LU: And maybe you see a divide between the “art-worldart
world” and the “ren-art—werldnon-art world” But for me,
it isn’t helpful to draw these lines when trying to bring the
different fields together.

Taccept that you don’t need to open with art. You can open
with something else and then sucker-punch with art, right?
DAVE: Yes, yes, yes, it’s like “Just—kidding,—itwas—all
a—dreamjust kidding, it was all a dream’.

LU: “It—was—art—the—whole—timelt was art the whole
time”.

DAVE: For the SelfImageSelfImage in that sense, you are
100% right. There is an art component to it, and a marketing
component — an attempt to be viral, which I have completely
failed at.

LU: Except —

DAVE: Well I mean, everybody wants the next zero on their
views, on their citations, on their patreon, whatever it hap-
pens to be. But 'm still only down at the sort of two to three

LU: Yeah okay, I just think it’s good I got you to admit that
the SelfImageSelfImage is art.
Ykav-Lmad lo » 4

3.5 The/API o8
4 The nature of natural code 619

: is the APPHemeowfrom—your-video {21 620
that-it-hasfeur-proecesses-but-what-deesitmean?- 621

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Dialogues on Natural Code

The canonical Chomsky hierarchy stuff [?] is all about lan-
guages having compositional, recursive, syntactic structures,
allowing language users to create open-ended complexity.
And I think that’s great, but it doesn’t go nearly far enough.
Syntaetic-language-properties;on-On their own, syntactic
properties are almost a detail. Thereare-’s other ways to get
modularity, and-complex representations, and so on. For ex-
ample, you could just list chosen words in a random order —
“wood, hammer, nail” — and it could create a notion in the
listener’s head —Woed,—hammer—nail—and-that could
be quite rich, with hardly any syntax.

LU: Splinters.

DAVE: Right. Sore thumb. So I'm hesitant to embrace the
idea that it’s all about language and which structural prop-
erties of language are important. I think that’s wrong. In-
stead, I want to talk about “eedecode”, and not “pregramming
languageprogramming language”. And by saying €edecode,
I want to rope in signals, gestures, grunts — stuff that seems
below the level of programming languages.

4.1 Starting from signals

LU: Okay, “code”~code>~codecode” “code” “code”. Not just
language. I think that’s right. You can get too o focused on the
structure and syntax of language. I think it’s more important
to think about the purpose of language — the purpose of code,
I mean.

When I was a teacher, I worked with very young children
who struggled to communicate with other people, for various
reasons. It wasn’t that these children necessarily struggled

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

weith language. In fact, some of them were hugely competent
with language and its syntax. They struggled with commu-
nication in a more general sense, which can sometimes in-
volve no syntax or language at all. It can mean “predding
semeeﬁeproddlng someone”, “tooking—at——someonelooking
at someone”, or simply “tugging—on—their—handtugging

on their hand” to pull them along.
The first step that we always tried to get across to these

young children was, “Teek—at—all—thegood—things—yeu
can—get—frominteractingwith-semeenelook at all the
good things you can get from interacting with someone”,
and we used a lot of biscuits.

Most children love biscuits, right?

DAVE: Cookies..

LU: And if you can tell them, “teek;—you—can—prod—me;
pointatabiscuit;—and-I-will-giveyou-abiseuitlook,
you can prod me, point at a biscuit, and I will give
you a biscuit”, then you can show them the purpose of
communication. And in some way there’s very little syntax
or structure to learn there.

For the next step, we did this thing called PECS with some
of the children. It’s a Picture Exchange Communication Sys-
tem [?] where they can give me a little bit of card that has a
picture of a biscuit on, and I give them a biscuit in return. So
the key thing here is the code. This card is this executable
program. It says “give—me—a—biseuitgive me a biscuit”.

The funny thing is, once a child realizes, “eh—I—can—get
whatT-want—frem-thisoh I can get what I want from this”
and “F-ean—makepeoplte—de—thingsl can make people do
things” then they quickly become very motivated to learn
how to communicate more complicated things.

DAVE: That’s great. I do think you’re right. That example
gets to the heart of what bugs me about abstract language
discussions versus all-in natural—ecedenatural code.

What matters is that a communication occurs, and that it
causes something to happen. It causes the world to become
better for the transmitter. If the act of transmitting code, by
holding up that picture card, actually leads to “yum—yumyum
yum” then all the syntax and stuff can come later. I think it
could really help if we thought of programming languages
starting from no syntax, starting from just signals.

4.2 From spatial computing to symbols

DAVE: A key aspect of what you said is that it relies on spa-
tial computing [e.g., ? ?]. You said “point—at—thebisecuit
and—I—will—give—you—a—biseuitpoint at the biscuit
and I will give you a biscuit”. That depends on being
physically close to the thing that you're indexing because
you cannot say “biseuitbiscuit” yet. You don’t know how
to do that, but when it’s close enough, you can just indicate
that thing right there. And that’s how semantics begins.
Then going to the cards is great as a next step because that
is an example of a pointer dereference. You have a symbol

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

that, physically, is just some ink on paper, and yet it can refer
to a biscuit, and program someone to bring it to you, even if
it’s in another room, out of sight.

LU: We talked about it as “symbetssymbols”. That’s the ter-
minology we used in that field of education, and it’s the
terminology I use now when I talk about coding. That sym-
bol could be the child putling—en—your—eoatpulling on
your coat, or a particular made-up sound, as long as you
know that it means “bisetitbiscuit”.

DAVE: Right right, it could be anything. All that matters is
that there’s a shared understanding. It’s a little specific AP

Sample-applicationspagefromthe SelfimageARL datasheet:

4.3 “Natural code” as a symbol
4.4 Natural-code as-asymbel

LU: When we saw children make a jump to verbal language,
it was often when those first symbols just became more
inconvenient. Getting out the biscuit card from your lit-
tle pack of cards becomes a chore. Then you realize that
it’s much quicker and more effective to just say the word,

“biseuitbiscuit”.

And now I see that happening with me and you too. Some-
times, I want to refer to a concept that we've previously
discussed, but in a much more concise way, and we don’t
have a word or symbol for that concept yet, so we keep hav-
ing to go through it in its entirety again and again. I mean, we
can edit that out in the essay, but it’s very time-consuming
for us right here, right now.

So the solution, of course, is to make a symbol that can
serve as an abstraction. We need a word that we can deref-
erence to get a whole concept. And that’s what the term

“hatural—ecodenatural code” can be. It can refer to this

shared understanding that we’re building.
DAVE: I see. So now, now you’re at a meta level.

LU: Natural—ecede “Natural code” is a symbol. It’s a names-
pace. It’s an API that we can use to make our communication
more effective. But it only works if we both understand what
it means, so that it’s a compatible format for us both to use.
That’s exactly what we’re doing in these dialogues — we’re
developing a shared language — we’re developing our shared
codebase.

5 The SelfImageselfimage API

LU: So, Dave: What is the SelfImageSelfImage API? I know
from your video [?] that it has four processes, but what does
it mean?

DAVE: Fields like philosophy and religion and science offer
us language to talk about what kind of machines we all are.

%I think therefore I am, or T am a collection of

neurons’,

Lu Wilson and David H. Ackley

LU: Okayimagine Fve-boughtinto-the natural—code idesa;
and-nowwant-te-put-itintopractiee-Or “We are made up

of needs and wants and motivations’;wm

DAVE: Right. All of these languages contain some germ of
truth, but none of them are going to be wholly sufficient to
ask. So what we need to do is choose multiple approaches —

out-for-me?-multiple languages. I think of them as “APIs”.
They’re clearly not perfect, and don’t cover everything, but
they emphasize certain parts, and make it easier to express

some concepts versus others.
So the SelfImageSelfImage (see Fig. 2) is such an APL It

depicts us as arrangements of four computatlonal processes:

1. EapwtInput: Handling influences from our surroundings

2. QutputOutput: Performing work on our surroundings,

3. SequeneeSequence: Changing internal states over time,

and
4. JudgeJudge: Assessing situational desirability.

Ifwe’re interested in how we understand the world around
us, we'll focus on the dnputinput process. If we want a deeper
understanding of how we actually create and do things in
the world, we'll unpack the ewtputoutput process, and so
on. That’s-by-design—That’s-the point1t’scompatible-with
a-wide range-of-uses;-and-the-

The SelfImageSelfImage APlis-thesame-is a really basic
framework to see ourselves through a computational lens.

5.1 API design

LU: RightIsee—AndI-saw—in-your—videe{?1howyot're
uﬁng%h&MSe}ﬂmageSelf Image APFasa-moedel

o

«, » 53

(seeFig—3) Butinaf} it feels 1 1
anythinginthere-API seems no different than a psychological
model that aims to describe how people behave. It reminds
me of something like Maslow’s hierarchy of needs [?], or

operant conditioning [?], even.

DAVE: I-hope that-you—eould-model-anything—atleast
any-implementable-machine—with-the-Ah, okay. What ’'m
suggesting is that, by taking the computational metaphor,

850

881
882
883
884
885
886
887
838
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

Dialogues on Natural Code

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

LIVING S 1 f’ I APRIL 2024
COMPUTATION The Se mage API v16.10
The SelfImage is a core natural code
R EONRS BNMPLES framework for describing organisms and
— implementing machinery. Especially
(01N look read ich suited for programmable systems such
] P%g%gé"seesféeil . as people and digital computers.
Input €ar recgive Kev API feat
- ey eatures:
>T 2 wrrte sing act\'} * Clean process-first design
o p erf orm domake * Very obvious, compact & memorable
Output transmlt speak * Widely implementable
expect Selfl ma ge * Core judgment process supports
}:93 mr%gfdﬁtplia{n core visual first-class distributed agency
Seq‘u:‘ance ounttbrgéséro%nfmm iconography » Unlimited usage rights
f*\r, s CNOOSE cncournae API requirements:

* Metabolism / Power & Cooling

N eidecide st

oppose evaluate ple love < desire
Judge criticize conclude presere

PUBLIC
DOMAIN

* Persistent modifiable state
(if using programmability)

Figure 2. The SelfImage API datasheet cover. To propagate successfull

even the most complex and subtle ideas must also

have small and memorable representations. If the idea creators fail to provide them, the idea consumers — if there are any —

must and will. Here, as an example, the SelfImageSelfImage API begins with four simple words and a single shape.

the SelfImageSelfImage APL-beeauseit-API can simultaneousl

describe both people and other programmable machinery.

That’s one difference.

And secondly, I's-deliberatelytrying-m claiming that the

SelflImageSelfImage APIleads more directly to implementabil-

ity than a psychological description, because it uses the lan-
guage of computation.

LU: So it’s not solely a descriptive model?

DAVE: Right. It can be a blueprint. It can be a recipe for how
to build machinery.

LU: Okay, it seems more like a design challenge — you want
to make an API that’s useful, regardless of how truthful it is
as a description.

DAVE: A scientific theory succeeds when it gives us an
unexpected truth. But that’s not the goal of an APLin software
design. We want an API to be as general-unsurprising as
possrble But-if-you-think-anyef-these—examples—arenot

The goal of an API is to be obvious, and that’s what we can

judge it on — how universally obvious it is.
Yeahit'sVagueness-As-A-ServiceLU: I think I getit. It’s

more like user experience design, in a way. It’s a communication 9

tool that lets us talk about the world in a certain way —
under a computational lens.
It should be as easy and straightforward to use as possible.

5.2 Shared code

LU: Sometimes, when I'm developing computer code, I il
use some tooling to help me, like Google Chrome’s DevTools-
Tl hat s soi nsid hi hat,
to see what code is being executed, where it crashes, and so
on.

But sometimes the tooling doesn’t show me enough help-
ful information—n-theseeireumstaneces;Toften-construetmy
owirvisualization-, 50 | draw my own visualizations of my
code’s execution —J-often-draw-it— on a piece of paper, or
a whiteboard, or a virtual whiteboard like tldraw [?]. It
could be a drawing of a state machine, or a ﬂowchart or

deeper-bug-with-the APL-and-weneed-to-back-up-We want

to adhere to the law of least astonishment. [?
Okay-se-perhaps-the-vagueness-ef natural-codeisactually

afeature?Ideally, an API should not teach us anything new.

W Regardless my drawmg isa hrghly 31mp11-

fied version of what’s actually happening in execution.

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

968
969
970
971
972
973

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

nsid hine. but it’s-a_helpfulal omt]

On top of that, my drawings become a shared language
that I can use to communicate with my colleagues. They can
look at my visualization and understand what I'm trying to
achieve. And if they have a suggestion for how to improve it,
they can communicate with me via the shared model. They
can draw on it, or edit it, or make their own version. It’s a
shared API we have between us.

To me, the SelfImageSelfImage API feels like a similar
kind of visualization. It’s not necessarily an accurate repre-
sentation of what’s going on inside my machine, but it’s a
helpful abstraction that allows me to think through how my
code is executing, and how it could be improved.

DAVE: Yes, absolutely. The diagram is still much simpler
than the code and the machine it’s depicting, but it has value
in the moment. All we really need is to be confident that the
diagram is implementable.

When we derive a diagram from running code, we know
the diagram is implementable, because “here’s—an—imple—
mentationhere’s an implementation”. Butif we add another
arrow, say, the diagram may no longer be implementable
in the existing code. And that tension, between simplified
abstractions and actual implementations, is what code devel-
opment is all about.

If there’s a small set of abstract but widely implementable
processes with a lot of descriptive power, we should give
them a name to go by. That’s all the SelfImageSelfImage
APl is.

6 Developing natural code

LU: Lookingbaek:Okay, imagine I've bought into the "natural
code” idea, and now I want to put it into practice — I want
to start developing “natural code’. I want to improve the
shared codebase! Well, that feels really hard to do, because
the concept is so unsatisfyingly vague. How do I actually

develop “natural code”? Can you spell it out for me?

DAVE: 've been accused of being too vague before, and to
some degree I will plead guilty to that. But also, that’s just
the nature of APIs. The whole idea is that they’re abstract. I
mean, like a linked list is utterly vague about what's inside
going to need in the list, and so on. That’s by design. That’s

the point. It’s compatible with a wide range of uses, and the
SelfImageSelfImage API is the same.

LU: Right, I see. And I saw in your video [?] how you're
using the SelfImageSelfImage API as a model for some ex-

ample computations, like “The Daydreamer” % (see Fig. 3).
But, in all honesty, it feels like you could put anything in
there.

10

Lu Wilson and David H. Ackley

DAVE: | ean-see-people-getting-stuck-on-the“programming 1046
other—people’idea—A-gutreaction T getfrom-itisthatit 1047
seemsreallyecold;youknow? Tralmeost seems-psyehopathie; 1048

i tke-hope that you could model anything — 104
atleast, any implementable machine — with the SetfimageSelfInage
API, because it’s all-about-trying-to-manipulate otherpeople: 1051
deliberately trying to be as general as possible. Like, if either 1052
of us think some example is not implementable, then we 1053

should focus on that until we reach some shared notion of 1054
an implementation strategy. Or maybe we discover there’s 1055
some deeper bug with the API, and we need to back up. 1056

ButILU: Okay so perhaps the vagueness of natural code 1057
is actually a feature? 1058

i . 1059
DAVE: Yeah it’s Vagueness As A Service. 1060

6.1 Traditional programming 1061

1062

LU: And what about this? One reviewer felt that “natural
code” doesn’t help with traditional programming — so it’s 1064
maybe off-topic for Onward! Essays. 1065

DAVE: It’s true we didn’t stress implications for traditional 1066
rogramming, but I think there are some basic connections. 1067

1068

LU: And what are they? 1069

DAVE: One way natural code informs traditional programming "
is by shouting “Snap out of it! It’s time to get over

. . . . 1072
hardware determinism!” And abandoning hardware determinism
1073

drives a focus on robust-first programming [?].
1074

LU: Yes. | guess, with the MEM architecture [?] and T2 Tile
Project [?], yow've made a case for a new, non-deterministic
kind of computer architecture, But that involves switching
to a whole new hardware stack. Does robust-first speak at .
all to people programming on traditional hardware? 1079

DAVE: Well, yeah, if the computing model is big CPU and 1080
big flat RAM and hardware determinism, serious robustness 1081
is scarcely an option. But still, natural code can at least offer 1082

1071

support for some programming concepts over others. 1083
LU: Like what? 1084
DAVE: Well, here’s three: 1o
) . . 1086
1. Event-driven programming: Prefer dialogue over monologue o

— shorter code sequences interacting.
D : 1088
2. Self-stabilizing code: First be robust, then as correct as 080
ossible, then as efficient as necessary. 109
3. Minimize state: Prefer recomputing over caching where 1001
ossible; let the world be its own representation. .

And maybe overall, natural code says be wary of people 1093
advocating correctness and efficiency only. I think traditional 1004
rogramming needs to hear that! 1095
1096

6.2 Debugging natural code 1097

LU: I'm thinking back to when I said that “programming other 1098
people” seems cold and — 1099
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Dialogues on Natural Code

LIVING
COMPUTATION

FOUNDATION

The SelfImage API

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

APRIL 2024
v16.10

COMMON GRIPS: TYPICAL PROCESS DEPLOYMENTS

"Stimulus-response" "Observer" "Motormouth" "State Machine"
L Transition
UNUSED Thinking Sequencing func:c&.on
Undriving & “‘ “‘ R
undriven; hi-Z D>>)] }2~)§ &5) Dﬁﬁ)
Stimulus Response Watching Blabbing Input Output
DYNAMIC
Driven & driving;
ac‘lvetra“ts,m"m; "Flow State" "Daydreamer" "Depressed” "Parametric Search"
computing Guessignerating
\:‘ Fantasizing Ruminating ’ ‘
STATIC D > v, Limits,y oy
Boundary Current Immediate constraintsj Guess
conditions; situation reaction testing
constraints; toyine Loyine Hating pa— 5 3 Zjiiiél)
it it Search Search
parameters fails succeeds

Figure 3. Sample a

lications page from the SelfImage API datasheet. Though informal, rough, and categorical, such simple

visual representations of SelfImageSelfImage configurations —“grips” — may offer insights. For example, highlighting the
similarities between “Parametric Search” and “Depressed” might possibly be useful to an organism stuck in the latter grip.

DAVE: And how do you feel now?

LU: Well, I still think it seems cold. And I can see that “coldness”

blocking some people.
But I see you'm-realizing-that-yow're not saying it for a
cold-hearted reason. Instead, it’s a way of thinking deeply

about our communications, that will allow us to try to figure
out how to become more compatible with each other, right?

My natural code is going out and yours is coming back.

And maybe we’re not hearing each other. Maybe we’re not

on the same page. Maybe we’re struggling on the same thing.

Maybe we’re both trying to improve the world in the same
way, but we’re not able to work together. We’re not able to
understand each other in some way.

And you have this idea of “Right;—tet’slook—at—this
in—natural—code—termsRight, let’s look at this in
natural code terms”. “bet’s—try—to—look—at—where
to—transpile—the—codebetween—us-Let’s try to look

» <

at where our code is incompatible.” let’s try to find
a shared code that we both understand.” “Let’s try to

A~

transpile the code between us.”

DAVE: In the secret fortress of solitude in our heads, we
are all trying to get what we want, but there’s this huge veil
of silence over that fact. We don’t quite admit it, because it
doesn’t sound good. It sounds selfish, and so people ask, “Be

11

, 1 :

: , Lfish] .
make—people—give—you—theresults—ofbeing—good?Do
you do good because you’re actually trying to do good
or just because you’re selfishly trying to make people
give you the results of being good?” Well, so that is an
example of something that can be cleared up by taking this
point of view of code transmissions.

We are coders. We're all trying to get what we want. And
because we’re alive, what we want tends to be stuff we think
will help us persist and survive in the world. And cookies
are a proxy for survival because we need energy to persist
and sweets are a proxy for energy. So we think we’re helping
ourselves persist, and it’s “yes;—yes;—cookie;—yesyes, yes,
cookie, yes” from the hardware. Then we end up looking
like me.

LU: And I think that most of us, as adults, we pick that up
implicitly, right? We learn that we can influence other people
by deploying code, verbally or otherwise. Like saying “Hey-
duck!Hey, duck!” to someone and they duck.

But some of these children I worked with — for one reason
or another, they struggled to pick this lesson up implicitly, so
they had to explicitly learn it. And they often ended up un-
derstanding it better than many of their peers, who did learn
it implicitly. These children gained mastery over communi-
cation by debugging it when it wasn’t serving their interests

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

as well as it could have. Perhaps more people could benefit
from this kind of explicit debugging of their communication
— of their code transmission.

DAVE: Right! We can often see implementations most clearly

when they break down. The eede-thechildrenwere transmitting

children’s code wasn’t executing the way they wanted, and
that’s eertainly-—very-frustrating, so you worked together to
debug that. You made super-accessible communication chan-
nels, so step by step the kids could start choosing to transmit
code that makes their world better.
—

DAVE: Once we admit, or once we just ehoesedecide, that
language is code, then the natural—code natural code
framework says it’s all about acts of code transmission. Some
transmission through space from A te-B at-time-€A to B at
time C: What code shipped? Did that transmission happen
for a good reason? Would we rather widen that channel, or
maybe block it? All such questions are fair discussion topics
among “natural—codersnatural coders.

The overall goal is to debug the great machine and improve
its codebase. Close up, between us, the purpose is to find a
win-win, so I understand what your language means in my
terms and vice versa — so we can share code effectively and
our collective distributed machine works better. And I think,
if we choose to be resolutely explicit about that — that we
are coders, we are developers, and we’re trying to debug the
machine — we might all be happier and more productive,
and our world more robust and sustainable.

6.3 Buggy code

DAVE: But unfortunately there are also grifters, who deliberatel

and knowingly ship bu code, where the transmitted narrative

is a trick to cover theft, or corruption, or other evil.
LU: People sowing division, spreading misinformation —

DAVE: Even good people can ship bad code in moments
of weakness. They know in their hearts that the code isn't
exactly right, and that its bugs benefit the transmitter. In
tiny ways at least, it’s like nobody is completely without
sin, so typically all remain silent. And the result is that good

LU: Some bugs are bigger than others.
44444,g8544444,
LU: One of the reviewers expressed concern that natural
code can be misused.
DAVE: For sure. Natural code gets misused a lot.
LU: Yes, it’s happening already, all around us, whether we

explicitly acknowledge it as natural code or not, harmful
natural code is being shipped and —

DAVE: And we’d be better off acknowledging that —

LU: Because then we can be more explicit about naming it
as such, and calling it out, and then —

12

Lu Wilson and David H. Ackley

DAVE: And then we can start talking like developers, and
et down to debugging our shared natural codebase.

7 Owning our natural codebase

DAVE: Okay another run at a summary: There are many

many ways to describe things. On the one hand, they are

not all equally good for all purposes, but on the other hand,

there’s no one language that’s “uriguely-most—trueuniquely
most true” either. You talk differently to your grandma than

to a colleague or friend, because different code receivers un-
derstand differently, and have different shared dictionaries

with-yowbetween you.

So the claim has two parts. First: We have to make choices
about how to describe and understand ourselves and the
world. We cannot delegate those choices, even if we really
want to — not to other people, not to the universe itself. And
second: One choice should always be that we are coders.

It’s about all our code transmissions, natural and artificial.
Is it all a metaphor? Sure, if you need it to be, but I'll still
claim it’s a simple and powerful basis for understanding and
improving our shared computation.

So natural—code natural code will be one of many ways
of describing and building things. It won’t erase art, or philos-
ophy, or any of those things. But it will always be available
in addition. “bet’s—consider—this—in—terms—ofnatural
eede~Let’s consider this in terms of natural code.”

—
LU: Over the last months we have attempted to own the ideas
of natural code — struggling towards shared understanding
where previously there was none. My hope is that other

people will see our example and become inspired to do the
same, though we cannot know for sure if that will happen.

DAVE: Indeed. We can only do what we can, and it won’t
all be easy. I hope that, once they see themselves as natural
coders, people of good faith everywhere will work for a better

shared codebase I do have hope But-unfortunatelythere

7,%7

LU: To me, natural code is about building bridges, and getting
people to work together — to name and call out the bad code,
while celebrating the shipping of better code.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

T 1308

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

Dialogues on Natural Code

To do this, we may as well talk in terms of natural code. We
may as well talk about developing our APIs, and debugging
our difficulties, and improving our codebase. And I do believe
that more and more people will join us on this, and become
more deliberate about being natural coders.

13

SPLASH ’24, October 20-25, 2024, Pasadena, California, United States

DAVE: And this is just a beginning.
LU: Step—by—stept “Step by step”!
DAVE: Step by step.

Revised 18 July 2024

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

	Abstract
	1 Being machinery
	1.1 Building machinery
	1.2 Contracting machinery
	1.3 Human hardware
	1.4 Coldness and evil

	2 Beyond determinism
	3 Prior ``art''
	3.1 Historical traditions
	3.2 Implementability
	3.3 Related work
	3.4 Blending fields

	4 The nature of natural code
	4.1 Starting from signals
	4.2 From spatial computing to symbols
	4.3 ``Natural code'' as a symbol

	5 The SelfImage API
	5.1 API design
	5.2 Shared code

	6 Developing natural code
	6.1 Traditional programming
	6.2 Debugging natural code
	6.3 Buggy code

	7 Owning our natural codebase
	References
	4e1f7880-8377-4b47-939a-019a8f796f10.pdf
	Abstract
	1 Being machinery
	1.1 Building machinery
	1.2 redHow to build blueContracting machinery
	1.3 Human hardware
	1.4 Coldness and evil

	2 Beyond determinism
	3 Prior ``art''
	3.1 Historical traditions
	3.2 Implementability
	3.3 Related work
	3.4 Blending fields
	3.5 redThe red/ API

	4 The nature of natural code
	4.1 redAPI design
	4.1 Starting from signals
	4.2 From spatial computing to symbols
	4.3 blue``blueNatural codeblue'' as a symbol
	4.4 redNatural code redas a symbol

	5 blueThe redSelfImageSelfImage API
	5.1 blueAPI design
	5.2 Shared code

	6 Developing natural code
	6.1 Traditional programming
	6.2 Debugging natural code
	6.3 Buggy code

	7 Owning our natural codebase

